Ukraine Is Riddled With Land Mines. Drones and AI Can Help

This startup is reinventing the process of demining

Jasper Baur

25 Apr 2024

A man stands in a field with several dozen objects of different shapes and sizes lying on the ground in front of him.

At an explosives test range at Oklahoma State University, the author [pictured] tested his technology’s ability to detect land mines and dozens of other kinds of explosive ordnance.Demining Research Community

Early on a June morning in 2023, my colleagues and I drove down a bumpy dirt road north of Kyiv in Ukraine. The Ukrainian Armed Forces were conducting training exercises nearby, and mortar shells arced through the sky. We arrived at a vast field for a technology demonstration set up by the United Nations. Across the 25-hectare field—that’s about the size of 62 American football fields—the U.N. workers had scattered 50 to 100 inert mines and other ordnance. Our task was to fly our drone over the area and use our machine learning software to detect as many as possible. And we had to turn in our results within 72 hours.

The scale was daunting: The area was 10 times as large as anything we’d attempted before with our drone demining startup, Safe Pro AI. My cofounder Gabriel Steinberg and I used flight-planning software to program a drone to cover the whole area with some overlap, taking photographs the whole time. It ended up taking the drone 5 hours to complete its task, and it came away with more than 15,000 images. Then we raced back to the hotel with the data it had collected and began an all-night coding session.

We were happy to see that our custom machine learning model took only about 2 hours to crunch through all the visual data and identify potential mines and ordnance. But constructing a map for the full area that included the specific coordinates of all the detected mines in under 72 hours was simply not possible with any reasonable computational resources. The following day (which happened to coincide with the short-lived Wagner Group rebellion), we rewrote our algorithms so that our system mapped only the locations where suspected land mines were identified—a more scalable solution for our future work.

In the end we detected 74 mines and ordnance scattered across the surface of that enormous field, and the U.N. deemed our results impressive enough to invite us back for a second round of demonstrations. While we were in Ukraine, we also demonstrated our technology for the State Special Transportation Service, a branch of the Ukrainian military responsible for keeping roads and bridges open.

All our hard work paid off. Today, our technology is being used by several humanitarian nonprofits detecting land mines in Ukraine, including the Norwegian People’s Aid and the HALO Trust, which is the world’s largest nonprofit dedicated to clearing explosives left behind after wars. Those groups are working to make Ukraine’s roads, towns, and agricultural fields safe for the Ukrainian people. Our goal is to make our technology accessible to every humanitarian demining operation, making their jobs safer and more efficient. To that end, we’re deploying and scaling up—first across Ukraine, and soon around the world.

The Scale of the Land-Mine Problem

The remnants of war linger long after conflicts have died down. Today, an estimated 60 countries are still contaminated by mines and unexploded ordnance, according to the 2023 Landmine Monitor report. These dangers include land mines, improvised explosive devices, and shells and artillery that didn’t explode on landing—all together, they’re known as explosive ordnance (EO). More than 4,700 people were killed or wounded by EO in 2022, according to the Landmine Monitor report, and the vast majority of those casualties were civilians. Today, Ukraine is the most contaminated place in the world. About a third of its land—an area the size of Florida—is estimated to contain EO.

In humanitarian mine-clearing work, the typical process for releasing EO-contaminated land back to the community hasn’t changed much over the past 50 years. First a nontechnical survey is conducted where personnel go out to talk with local people about which areas are suspected of being contaminated. Next comes the technical survey, in which personnel use metal detectors, trained dogs, mechanical demining machines, and geophysical methods to identify all the hazards within a mined area. This process is slow, risky, and prone to false positives triggered by cans, screws, or other metal detritus. Once the crew has identified all the potential hazards within an area, a team of explosive-ordnance-disposal specialists either disarm or destroy the explosives.

You can access the full article by clicking here!

Safety With Confidence

Safe Pro Group Inc.
Safe Pro Group has strategically acquired and assembled three business units focused on protecting those who protect us all. Our strategic emphasis is on the development of a cloud-based ecosystem for analyzing drone imagery utilizing proprietary artificial intelligence (AI), machine learning, deep learning, and applied computer vision software for hyper scalable processing, analysis, and reporting. Our core capabilities include artificial intelligence/machine learning, mission critical drone services and the manufacturer of ballistic protective products. Safe Pro is led by a team of executives and subject matter experts drawn from the government and commercial sectors dedicated to assembling unique safety and security technologies for governments, enterprises, and NGOs, enabling them to respond to evolving threats.

+ 18305 Biscayne Blvd., Suite 222, Aventura, FL 33160
+ 786.409.4030

© 2024 Safe Pro Group Inc.